Aquaculture

What is Aquaculture?

Aquaculture is the controlled process of cultivating aquatic organisms, especially for human consumption. It’s a similar concept to agriculture, but with fish instead of plants or livestock. Aquaculture is also referred to as fish farming. The seafood that you find at your local grocery store is likely labeled as farmed fish. Aquaculture can happen all over the world, and it does: in coastal ocean waters, freshwater ponds and rivers, and even on land in tanks.

The increased demand for fish has put a strain on resources and sustainable practices among fisheries, requiring the innovative use of existing and new technologies. Fortunately, there is great potential to produce this protein source sustainably, particularly through the advent of technology.

Sensors for smarter, more sustainable aquaculture

One of the coolest technologies is that of eFishery, which uses sensors to detect the hunger level of the fish and feed them accordingly. It can be used in any size farm and can reduce feed costs by up to 21 percent.

Real Tech uses sensors to monitor water quality and uses ultraviolet transmission to disinfect water of pathogens and clean aquaculture production facilities. Norwegian AKVA Group builds an entire cage with cameras, sensors, feeding and recirculation systems for use in open ocean or inland farming.

Osmobot focuses exclusively on land-based aquaculture and allows for cloud management and mobile connectivity. YSI has an array of handheld sensing devices, automatic feeding technology and transportation tanks that maintain the fishes’ ideal environment. Other neat companies that offer entire monitoring systems include IPI Singapore, which offers real-time monitoring and connects for cloud-based analytics, and Pentair, which offers a complete suite of sensor-enabled aquaponic equipment for the small-time hobbyist all the way up to commercial production companies.

Artificial intelligence empowers aquaculture decision-making

Collecting most of their information from sensors, many aquaculture technology companies are harnessing the power of artificial intelligence (AI) to improve decision-making. The Yield, an Australian company that provides technologies for all types of agriculture, uses its Sensing & Aqua technology to create predictive analytics for enhanced data-driven decision-making.

A robotic fish known as Shoal uses AI, or swarm intelligence (SI), to detect pollution underwater. The robots are sent out as a group and must be able to navigate their environment, avoid obstacles, including those of other robotic fish, recharge themselves at charging stations and generally make decisions autonomously of humans. Even companies that are considered market leaders in simpler technologies such as camera and feeding systems, such as Steinvikare making strides to incorporate AI and system learning into their technology in order to remain competitive and accommodate customers’ rising expectations.

The introduction of AI can greatly reduce overexploited fish species through camera and data collection systems that use AI to identify species and enable greater accountability of harvesting practices.

The Seafood Innovation Cluster launched the AquaCloud platform, which aims to help managers, researchers and scientists gain new insights through its massive data collection and analysis. Particularly focused on sea lice management, the platform then uses AI to aid in the monitoring of infestations’ development and spread within the environment, effectively promoting more effective area management systems for the control of pathogens.

More Resources: